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Abstract: Cloud data storage is the main important feature in present dynamic software cloud applications. Thus, 

enabling public audit ability for cloud storage is of critical importance so that users can resort to a third party auditor 

(TPA) to check the integrity of outsourced data and be worry-free. To securely introduce an effective TPA, the auditing 

process should bring in no new vulnerabilities towards user data privacy, and introduce no additional online burden to 

user. The TPA to perform audits for multiple users simultaneously and efficiently. Extensive security and performance 

analysis show the proposed schemes are provably secure and highly efficient.  We propose in this paper a flexible 

distributed storage integrity auditing mechanism, utilizing the homomorphic token and distributed erasure-coded data. 

The proposed design allows users to audit the cloud storage with very lightweight communication and computation 

cost. The auditing result not only ensures strong cloud storage correctness guarantee, but also simultaneously achieves 

fast data error localization, i.e., the identification of misbehaving server. Considering the cloud data are dynamic in 

nature, the proposed design further supports secure and efficient dynamic operations on outsourced data, including 

block modification, deletion, and append. Analysis shows the proposed scheme is highly efficient and resilient against 

Byzantine failure, malicious data modification attack, and even server colluding attacks. 
 

Keywords: Data integrity, dependable distributed storage, error localization, data dynamics, cryptographic protocols, 

cloud computing. 

 

I. INTRODUCTION 

 

Cloud computing is the delivery of computing services 

over the Internet. Cloud services allow individuals and 

businesses to use software and hardware that are managed 

by third parties at remote locations. Examples of cloud 

services include online file storage, social networking 

sites, webmail, and online business applications. The 

cloud computing model allows access to information and 

computer resources from anywhere that a network 

connection is available. Cloud computing  provides a 

shared pool of resources, including data storage space, 

networks,  computer processing power, and specialized 

corporate and user applications. 
 

 
 

Cloud Computing has been envisioned as the next-

generation information technology (IT) architecture for 

enterprises, due to its long list of unprecedented 

advantages in the IT history: on-demand self-service, 

ubiquitous network access, location independent resource 

pooling, rapid resource elasticity, usage-based pricing and  

 
 

transference of risk. Moving data into the cloud offers 

great convenience to users since they don’t have to care 

about the complexities of direct hardware management. 

The pioneer of cloud computing vendors, Amazon Simple 

Storage Service (S3), and Amazon Elastic Compute Cloud 

(EC2) are both well-known examples. While these 

internet-based online services do provide huge amounts of 

storage space and customizable computing resources, this 

computing platform shift, however, is eliminating the 

responsibility of local machines for data maintenance at 

the same time. As a result, users are at the mercy of their 

cloud service providers (CSP) for the availability and 

integrity of their data. On the one hand, although the cloud 

infrastructures are much more powerful and reliable than 

personal computing devices, broad range of both internal 

and external threats for data integrity still exist. 
 

Privacy preserving approaches in cloud is an effective and 

flexible distributed storage verification scheme with 

explicit dynamic data support to ensure the correctness 

and availability of users’ data in the cloud. We rely on 

erasure correcting code in the file distribution preparation 

to provide redundancies and guarantee the data 

dependability against Byzantine servers, where a storage 

server may fail in arbitrary ways. This construction 

drastically reduces the communication and storage 

overhead as compared to the traditional replication-based 

file distribution techniques. By utilizing the homomorphic 

token with distributed verification of erasure-coded data, 

our scheme achieves the storage correctness insurance as 

well as data error localization: whenever data corruption 
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has been detected during the storage correctness 

verification, our scheme can almost guarantee the 

simultaneous localization of data errors, i.e., the 

identification of the misbehaving server(s). In order to 

strike a good balance between error resilience and data 

dynamics, we further explore the algebraic property of our 

token computation and erasure-coded data, and 

demonstrate how to efficiently support dynamic operation 

on data blocks, while maintaining the same level of 

storage correctness assurance. In order to save the time, 

computation resources, and even the related online burden 

of users, we also provide the extension of the proposed 

main scheme to support third-party auditing, where users 

can safely delegate the integrity checking tasks to third-

party auditors (TPA) and be worry-free to use the cloud 

storage services. 
 

 
Figure 2: Cloud storage service architecture 

 

Our work is among the first few ones in this field to 

consider distributed data storage security in cloud 

computing. Our contribution can be summarized as the 

following three aspects: 1) Compared to many of its 

predecessors, which only provide binary results about the 

storage status across the distributed servers, the proposed 

scheme achieves the integration of storage correctness 

insurance and data error localization, i.e., the identification 

of misbehaving server(s). 2) Unlike most prior works for 

ensuring remote data integrity, the new scheme further 

supports secure and efficient dynamic operations on data 

blocks, including: update, delete, and append. 3) The 

experiment results demonstrate the proposed scheme is 

highly efficient. Extensive security analysis shows our 

scheme is resilient against Byzantine failure, malicious 

data modification attack, and even server colluding 

attacks.  
 

II. RELATED WORK 

 

We consider a cloud data storage service involving three 

different entities. Users rely on the CS for cloud data 

storage and maintenance. They may also dynamically 

interact with the CS to access and update their stored data 

for various application purposes. To save the computation 

resource as well as the online burden, cloud users may 

resort to TPA for ensuring the storage integrity of their 

outsourced data, while hoping to keep their data private 

from TPA. Representative network architecture for cloud 

storage service architecture is illustrated in Fig. 2. Three 

different network entities can be identified as follows: 

User: an entity, who has data to be stored in the cloud and 

relies on the cloud for data storage and computation, can 

be either enterprise or individual customers. Cloud Server 

(CS): an  entity, which is managed by cloud service 

provider (CSP) to provide data storage service and has 

significant storage space and computation resources (we 

will not differentiate CS and CSP hereafter). . Third-Party 

Auditor: an optional TPA, who has expertise and 

capabilities that users may not have, is trusted to assess 

and expose risk of cloud storage services on behalf of the 

users upon request.  As users no longer possess their data 

locally, it is of critical importance to ensure users that their 

data are being correctly stored and maintained. That is, 

users should be equipped with security means so that they 

can make continuous correctness assurance (to enforce 

cloud storage service-level agreement) of their stored data 

even without the existence of local copies. 
 

Adversary Model 

From user’s perspective, the adversary model has to 

capture all kinds of threats toward his cloud data integrity. 

Because cloud data do not reside at user’s local site but at 

CSP’s address domain, these threats can come from two 

different sources: internal and external attacks. For 

internal attacks, a CSP can be self-interested, untrusted, 

and possibly malicious. Not only does it desire to move 

data that has not been or is rarely accessed to a lower tier 

of storage than agreed for monetary reasons, but it may 

also attempt to hide a data loss incident due to 

management errors, Byzantine failures, and so on. For 

external attacks, data integrity threats may come from 

outsiders who are beyond the control domain of CSP, for 

example, the economically motivated attackers. They may 

compromise a number of cloud data storage servers in 

different time intervals and subsequently be able to modify 

or delete users’ data while remaining undetected by CSP. 
 

III.  ENSURING CLOUD DATA STORAGE 
 

In cloud data storage system, users store their data in the 

cloud and no longer possess the data locally. Thus, the 

correctness and availability of the data files being stored 

on the distributed cloud servers must be guaranteed. One 

of the key issues is to effectively detect any unauthorized 

data modification and corruption, possibly due to server 

compromise and/or random Byzantine failures. Besides, in 

the distributed case when such inconsistencies are 

successfully detected, to find which server the data error 

lies in is also of great significance, since it can always be 

the first step fast recover the storage errors or identifying 

potential threats of external attacks. To address these 

problems, our main scheme ensuring cloud data storage is 

presented in this section. The first part of the section is 

devoted to a review of basic tools from coding theory that 

is needed in our scheme for file distribution across cloud 

servers. Then, the homomorphic token is introduced.  
 

File Distribution Preparation 

It is well known that erasure-correcting code may be used 

to tolerate multiple failures in distributed storage systems. 

In cloud data storage, we rely on this technique to disperse 

the data file F redundantly across a set of n ¼ m þ k 
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distributed servers. An ðm; kÞ Reed-Solomon erasure-

correcting code is used to create k redundancy parity 

vectors from m data vectors in such a way that the original 

m data vectors can be reconstructed from any m out of the 

m þ k data and parity vectors. By placing each of the m þ k 

vectors on a different server, the original data file can 

survive the failure of any k of the m þ k servers without 

any data loss, with a space overhead of k=m. For support 

of efficient sequential I/O to the original file, our file 

layout is systematic, i.e., the unmodified m data file 

vectors together with k parity vectors is distributed across 

m þ k different servers. 

 

IV.  PROPOSED SCHEME 

 

In order to achieve assurance of data storage correctness 

and data error localization simultaneously, our scheme 

entirely relies on the precomputed verification tokens. 

Upon receiving challenge, each cloud server computes a 

short “signature” over the specified blocks and returns 

them to the user. The values of these signatures should 

match the corresponding tokens precomputed by the user. 

Meanwhile, as all servers operate over the same subset of 

the indices, the requested response values for integrity 

check must also be a valid codeword determined by the 

secret matrix P.  
 

Algorithm 1. Token Precomputation. 

1: procedure 

2: Choose parameters l; n and function f;_; 

3: Choose the number t of tokens; 

4: Choose the number r of indices per verification; 

5: Generate master key KPRP and challenge key kchal; 

6: for vector GðjÞ; j 1; n do 

7: for round i 1; t do 

8: Derive _i ¼ fkchal ðiÞ and kðiÞ prp from KPRP. 

9: Compute vðjÞ i ¼ Pr 

q¼1 _q 

i _ GðjÞ½_kðiÞ prp ðqÞ_ 

10: end for 

11: end for 

12: Store all the vi’s locally. 

13: end procedure 

Figure 3: Precipitation in token generation of cloud 

storage system 
 

Error localization is a key prerequisite for eliminating 

errors in storage systems. It is also of critical importance 

to identify potential threats from external attacks. 
 

A. Correctness Verification and Error Localization 

Error localization is a key prerequisite for eliminating 

errors in storage systems. It is also of critical importance 

to identify potential threats from external attacks. 

However, many previous schemes do not explicitly 

consider the problem of data error localization, thus only 

providing binary results for the storage verification. Our 

scheme outperforms those by integrating the correctness 

verification and error localization (misbehaving server 

identification) in our challenge-response protocol: the 

response values from servers for each challenge not only 

determine the correctness of the distributed storage, but 

also contain information to locate potential data error(s). 
 

Algorithm 2. Correctness Verification and Error 

Localization. 

1: procedure CHALLENGE(i) 

2: Recompute _i ¼ fkchal ðiÞ and kðiÞ prp from KPRP ; 

3: Send f_i; kðiÞ prpg to all the cloud servers; 

4: Receive from servers: 

fRðjÞ i ¼ Pr 

q¼1 _q 

i _ GðjÞ½_kðiÞ prp ðqÞ_j1 _ j _ ng 

5: for ðj m þ 1; nÞ do 

6: RðjÞ RðjÞ _Pr 

q¼1 fkj ðsIq ;jÞ _ _q 

i , Iq ¼ _kðiÞ prp ðqÞ 

7: end for 

8: if ððRð1Þ i ; . . .;RðmÞ i Þ _ P¼¼ðRðmþ1Þ i ; . . 

.;RðnÞ i ÞÞ than 

9: Accept and ready for the next challenge. 

10: else 

11: for (j 1; n) do 

12: if ðRðjÞ i ! ¼vðjÞ i Þ than 

13: return server j is misbehaving. 

14: end if 

15: end for 

16: end if 

17: end procedure 
 

B. File Retrieval and Error Recovery 

Since our layout of file matrix is systematic, the user can 

reconstruct the original file by downloading the data 

vectors from the first m servers, assuming that they return 

the correct response values. Notice that our verification 

scheme is based on random spot-checking, so the storage 

correctness assurance is a probabilistic one. However, by 

choosing system parameters ðe:g:; r; l; tÞ appropriately 

and conducting enough times of verification, we can 

guarantee the successful file retrieval with high 

probability. On the other hand, whenever the data 

corruption is detected, the comparison of precomputed 

tokens and received response values can guarantee the 

identification of misbehaving server(s) (again with high 

probability), which will be discussed shortly. Therefore, 

the user can always ask servers to send back blocks of the 

r rows specified in the challenge and regenerate the correct 

blocks by erasure correction, shown in Algorithm 3, as 

long as the number of identified misbehaving servers is 

less than k. (otherwise, there is no way to recover the 

corrupted blocks due to lack of redundancy, even if we 

know the position of misbehaving servers.) The newly 

recovered blocks can then be redistributed misbehaving 

servers to maintain the correctness of storage. 
 

Algorithm 3. Error Recovery. 

1: procedure 

% Assume the block corruptions have been detected 

among 

% the specified r rows; 

% Assume s _ k servers have been identified misbehaving 

2: Download r rows of blocks from servers; 
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3: Treat s servers as erasures and recover the blocks. 

4: Resend the recovered blocks to corresponding servers. 

5: end procedure 

 

V. EXPERIMENTAL RESULTS 

 

We now assess the performance of the proposed storage 

auditing scheme. We focus on the cost of file distribution 

preparation as well as the token generation. Our 

experiment is conducted on a system with an Intel Core 2 

processor running at 1.86 GHz, 2,048 MB of RAM, and a 

7,200 RPM Western Digital 250 GB Serial ATA drive.  
 

File Distribution Preparation 

File distribution preparation includes the generation of 

parity vectors (the encoding part) as well as the 

corresponding parity blinding part. We consider two sets 

of different parameters for the ðm; kÞ Reed-Solomon 

encoding, both of which work over GFð216Þ. This can be 

explained as follows: on the one hand, k determines how 

many parity vectors are required before data outsourcing, 

and the parity generation cost increases almost linearly 

with the growth of k; on the other hand, the growth of k 

means the larger number of parity blocks required to be 

blinded, which directly leads to more calls to our non 

optimized PRF generation in C. 
 

Challenge Token Computation  

Although in our scheme the number of verification token t 

is a fixed priori determined before file distribution, we can 

overcome this issue by choosing sufficient large t in 

practice. For example, when t is selected to be 7,300 and 

14,600, the data file can be verified every day for the next 

20 years and 40 years, respectively, which should be of 

enough use in practice.  Following the security analysis, 

we select a practical parameter r ¼ 460 for our token 

precomputation (see Section 5.2.1), i.e., each token covers 

460 different indices. Other parameters are along with the 

file distribution preparation. Our implementation shows 

that the average token precomputation cost is about 0.4ms. 

This is significantly faster than the hash function based 

token precomputation scheme proposed in [14]. To verify 

encoded data distributed over a typical number of 14 

servers, the total cost for token precomputation is no more 

than 1 and 1.5 minutes, for the next 20 years and 40 years, 

respectively. Note that each token is only an element of 

field GFð216Þ, the extra storage for those precomputed 

tokens is less than 1MB, and thus can be neglected. 
 

VI. CONCLUSION 
 

Consider the process data cloud storage using third party 

service provider. We utilize the homomorphic linear 

authenticator and random masking to guarantee that the 

TPA would not learn any knowledge about the data 

content stored on the cloud server during the efficient 

auditing process, which not only eliminates the burden of 

cloud user from the tedious and possibly expensive 

auditing task, but also alleviates the users’ fear of their 

outsourced data leakage. The proposed design allows users 

to audit the cloud storage with very lightweight 

communication and computation cost. The auditing result 

not only ensures strong cloud storage correctness 

guarantee, but also simultaneously achieves fast data error 

localization, i.e., the identification of misbehaving server. 

Considering the cloud data are dynamic in nature, the 

proposed design further supports secure and efficient 

dynamic operations on outsourced data, including block 

modification, deletion, and append. 
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